NYU

Lecture 13:
New Computing Paradigms



Notes

e Lab 3 grades posted, will post the breakdown very soon
e Second project meeting on this Thursday and Friday
o Please sign up if you have not.
e Final Presentation
o 5/13/2025 (9am-4pm, 2MTC, Rm 907)
o 5/14/2025 (9am-4pm, RH Rm 202)
o Will send all the information and signup sheet tonight
e Please participate the final course evaluation:
o https://coursefeedback.nyu.edu/nyu/
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Recap

e FovealNet: Advancing Al-Driven Gaze Tracking Solutions for Efficient
Foveated Rendering in Virtual Reality

e FovealSeg: Efficient Gaze-driven Instance Segmentation for Augmented
Reality
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Topics

e In-memory computing
e Stochastic computing
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Data Movement Costvs. Computation Cost
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e Retrieving a single element from
memory is more costly than

computing it.
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Data Movement Costvs. Computation Cost
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Data Movement Costvs. Computation Cost
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e For each single element within the input
feature maps, the maximum amount of
reuse = K°M.



Data Movement Costvs. Computation Cost
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For each single element within the weight kernel,
the maximum amount of reuse = BHW.

For standard convolution, the arithmetic intensity is
high.




Data Movement Costvs. Computation Cost
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Near/In-Memory Processing

digital near memory deep in-memory
Memory Memory Memory
SRAM SRAM SRAM
Bank Bank Bank
@ - Digital processing MlxedS|gnaI
ALU/ Dlgntal Processing
processing

e Near memory computing has a higher BW, and analog in-memory
computing integrate the computation with the memory access.
e Analog PIM brings compute closer to the memory.
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Near Memory Processing
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Gao, Mingyu, et al. "Tetris: Scalable and efficient neural network acceleration with 3d memory." Proceedings of
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Resistive Memory

e B
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Resistive RAM (ReRAM or RRAM) is a
type of non-volatile RAM that works by
changing the resistance across a
dielectric solid-state material, often
referred to as a memristor.
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Processing In Memory

I =V1G1+V2G2
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G1 ;;
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V1 —{ DAC
V2 — DAC
V3 — DAC

e The digital input are first passed to the DAC and converted to the analog input voltages.
e The voltages are applied to each of the rows in the crossbar array.
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Processing In Memory

I =V1G1+V2G2 V1 — DAC

Vi B V2 — DAC
k) A
v [ V3 — DAC

o X %

Y

e The output current accumulated at the bottom of each column is the dot product
between the voltages and the conductances across the rows.

e A sample-and-hold (S&H) circuit receives the bitline current and feeds it to a
NYUSAILAB *  ghared ADC unit
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Processing In Memory

Original T=1
V1=3 — DAC 1 — DAC
i oA oA
G1=1 G1=1
V2=2 — DAC 0 — DAC
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Result =9 Result = 1

DAC

S&H
ADC

Result =4

4x2'+1x2°=9

e Assume both inputs and weights are 16 bits, we need a 16-bit DAC to provide input
voltage, 2'8 resistance levels in each cell, and an ADC which can handle over 16 bits,

which leads to a significant overhead.
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Processing In Memory

Original
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e Instead, the digital input enters the crossbar in a bit-serial manner, the intermediate
results are buffered in the register. Shift-Add operation is them performed after all
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the input bits entering the crossbar.
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Processing In Memory

Original T=1 T=2
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Topics

e Processing in memory
e Stochastic Computing
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Stochastic Computing

e Stochastic computing is a computational
approach that utilizes random bit streams
to perform numerical calculations, offering
benefits in power efficiency and hardware
simplicity, particularly for error-tolerant
applications.

e Introduced by John von Neumann in
1953.
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The RASCEL stochastic
computer, circa 1969
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Stochastic Computing

e a=05b=05 e a=05b=05
o a=00111100 p (1)=05 o a=11001010 p (1)=0.5
o b=11000011 p,(1)=0.5 o b=01010011 p (1)=05
a 11111111 = ¢ a— 01000010 = ¢
b b_
p(1) =1 p(1)=0.25

e As the input stream lengthens, the multiplication process will become more
accurate.
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Addition with Stochastic Computing

e MUX implementation

o By adjusting Sel over time, the output of the multiplexer will equal to the weighted
sum of the input bit streams.
o The accuracy gets worse when the number of inputs to the MUX is large.

x1=1001 —0 x1=11111111—7—0

- Y=1001 — 11101010 = 0.25x1 + 0.75x 0.5 = 5/8
x2=1010 —11 x2=10101010—1

Sel Sel
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Nonlinear Operation with Stochastic Computing

e The tanh function is highly suitable for SC-based implementations because i) it can be
easily implemented with a K-state finite state machine (FSM) in the SC domain.
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e The major advantage of stochastic computing is the significantly lower hardware cost
for a large category of arithmetic calculations.
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Presentations

e [SAAC: CNN Accelerator with In-Situ Analog Arithmetic in Crossbars (Dhairya,
Rohan)

e Sc-dcnn: Highly-scalable deep convolutional neural network using stochastic
computing (Yinqi, Jeet)
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https://docs.google.com/presentation/d/1QPXj7viSuEG6gEl392iNsLVouoGkh-5NhX5kXnLfTaM/edit?usp=sharing
https://docs.google.com/presentation/d/1QPXj7viSuEG6gEl392iNsLVouoGkh-5NhX5kXnLfTaM/edit?usp=sharing
https://docs.google.com/presentation/d/1w1CcDUT_AnO2p6S6ayajN02eGRNaedOqjGML64CwwZs/edit?usp=sharing
https://docs.google.com/presentation/d/1w1CcDUT_AnO2p6S6ayajN02eGRNaedOqjGML64CwwZs/edit?usp=sharing

